A virus is spreading rapidly, and your task is to quarantine the infected area by installing walls.
The world is modeled as a 2-D array of cells, where 0
represents uninfected cells, and 1
represents cells contaminated with the virus. A wall (and only one wall) can be installed between any two 4-directionally adjacent cells, on the shared boundary.
Every night, the virus spreads to all neighboring cells in all four directions unless blocked by a wall. Resources are limited. Each day, you can install walls around only one region -- the affected area (continuous block of infected cells) that threatens the most uninfected cells the following night. There will never be a tie.
Can you save the day? If so, what is the number of walls required? If not, and the world becomes fully infected, return the number of walls used.
Example 1:
Input: grid = [[0,1,0,0,0,0,0,1], [0,1,0,0,0,0,0,1], [0,0,0,0,0,0,0,1], [0,0,0,0,0,0,0,0]] Output: 10 Explanation: There are 2 contaminated regions. On the first day, add 5 walls to quarantine the viral region on the left. The board after the virus spreads is: [[0,1,0,0,0,0,1,1], [0,1,0,0,0,0,1,1], [0,0,0,0,0,0,1,1], [0,0,0,0,0,0,0,1]] On the second day, add 5 walls to quarantine the viral region on the right. The virus is fully contained.
Example 2:
Input: grid = [[1,1,1], [1,0,1], [1,1,1]] Output: 4 Explanation: Even though there is only one cell saved, there are 4 walls built. Notice that walls are only built on the shared boundary of two different cells.
Example 3:
Input: grid = [[1,1,1,0,0,0,0,0,0], [1,0,1,0,1,1,1,1,1], [1,1,1,0,0,0,0,0,0]] Output: 13 Explanation: The region on the left only builds two new walls.
Note:
grid
will each be in the range [1, 50]
.grid[i][j]
will be either 0
or 1
.Intuition
\nLet\'s work on simulating one turn of the process. We can repeat this as necessary while there are still infected regions.
\nAlgorithm
\nThough the implementation is long, the algorithm is straightforward. We perform the following steps:
\nFind all viral regions (connected components), additionally for each region keeping track of the frontier (neighboring uncontaminated cells), and the perimeter of the region.
\nDisinfect the most viral region, adding it\'s perimeter to the answer.
\nSpread the virus in the remaining regions outward by 1 square.
\nComplexity Analysis
\nTime Complexity: where is the number of rows and columns. After time , viral regions that are alive must have size at least , so the total number removed across all time is .
\nSpace Complexity: in additional space.
\nAnalysis written by: @awice.
\n